
Quelques exercices n’ont pas encore de correction rédigée : n’hésitez pas à demander sur
le Discord si vous avez une question dessus !

1 Pression hydrostatique

Exercice 1 : Perfusion (QCM 2016)

Faisons un croquis de la situation.

Bras
H

Figure 1 – Perfusion.

Par le principe fondamental de l’hydrostatique, la pression du médicament à l’entrée du
bras du patient vaut P0 + ρgH, où P0 = 1 atm est la pression atmosphérique. Pour que le
médicament soit injecté dans le bras du patient, sa pression doit être supérieure à celle de
l’artère. L’énoncé donne Partère = 1,078 atm, d’où H > (Partère − P0)/(ρg) = 0,8 m.

Notre utilisation du principe fondamental de l’hydrostatique peut paraître abusive si le
liquide est en mouvement de la poche de perfusion vers le bras du patient, mais on peut se
rappeler que le théorème de Bernoulli se réduit au principe fondamental de l’hydrostatique
lorsque la vitesse est constante le long de la ligne de courant (ce qui est vrai en régime
permanent lorsque la section de la conduite est constante, par conservation du débit).

Exercice 2 : Ascension d’une bulle

Le gaz dans la bulle est considéré parfait, ce qui nous donne la relation PV = nRT . De
plus le processus est à priori isotherme, donc le produit PV est constant entre l’instant où
bulle est émise par le poisson et l’instant où elle arrive à la surface. De plus par le principe
fondamental de l’hydrostatique, la pression à la profondeur de 15 m vaut P = P0 + ρeau × g × 15
Ainsi

Vsurface =
PfondVfond

Psurface

Ce qui donne (avec les pressions en Pascal)

Vsurface =
(1, 0× 105 + 1000× 9, 81× 15)× 2, 0× 10−3

105
= 3,1 mm3

Exercice 3 : Tube en U (QCM 2015)

A

B

C

Figure 2 – Tube en
U dans la réponse
(c).

Considérons d’abord la réponse (c) et étudions la pression au point
C défini ci-contre. Ce point est à la même hauteur que le point A : par
le principe fondamental de l’hydrostatique, il a donc la même pression,
soit la pression atmosphérique P0 = PA = PC. Par ailleurs, il est à une
certaine hauteur sous le point B, disons H . Par le principe fondamental

1/9

IPhO :Hydrodynamique
(corrections)



Physicité IPhO : Hydrodynamique (corrections)

A

B

C

D

H1

H2

Figure 3 – Schéma de l’énoncé annoté.

de l’hydrostatique, on a donc PC = PB + ρgH . Mais on a aussi PB = P0, on
trouve donc P0 = P0 + ρgH : c’est absurde ! La réponse (c) ne peut donc
pas être la situation d’équilibre du système.

On exclut la réponse (d) de la même manière.
Enfin, l’énoncé précise que l’eau et l’huile dans le tube ont une masse

égale. Comme la masse volumique de l’huile est égale à deux tiers de
celle de l’eau, le volume d’huile doit être trois demis du volume d’eau.
Cela exclut la réponse (a).

La bonne réponse est donc la (b).

Exercice 4 : Étages (QCM 2016)

On cherche à calculer la pression au point D avant que l’on ouvre le tube (voir figure 3). En
effet, si cette pression est supérieure à la pression atmosphérique, le liquide se mettra à jaillir.
Si elle est inférieure à la pression atmophérique, il se fera au contraire pousser vers le bas, et
si elle lui est égale, rien ne se passera.

Pour cela, on définit les points intermédiaire A, B et C. Au point A, la pression est
égale à la pression atmosphérique P0. Au point B, on a PB = PA + ρgH1 = P0 + ρgH1 par
le principe fondamental de l’hydrostatique, où H1 est définie sur le schéma et ρ est la masse
volumique de l’eau. Puisque l’air a une masse volumique négligeable par rapport à celle de
l’eau, on peut considérer que la pression est homogène dans la région remplie d’air entre
les points B et C : ainsi, PB = PC. Enfin, par le principe fondamental de l’hydrostatique,
PD = PC − ρgH2 = P0 + ρg(H1 −H2). Comme visiblement H1 > H2, on a PD > P0 : l’eau jaillira du
tube lorsque son extrémité supérieure sera coupée.

Exercice 5 : Couvercle (QCM 2022)

Figure 4 – Système consi-
déré pour le bilan de forces.

On considère un système constitué du piston et de quasiment
toute l’eau dans le récipient : sauf une fine couche en son
fond est excluse de notre système. Les forces s’appliquant sur
notre système sont son poids, (mpiston + ρeauVeau)g, la pression
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atmopshérique sur le piston, PatmS, et la pression du fond du
récipient sur la face inférieure du système, PfondS.

Par le principe d’inertie, la somme des forces sur ce système
est nulle à l’équilibre, donc PfondS = PatmS + (mpiston + ρeauVeau)g.
On en déduit Pfond = Patm + (mpiston + ρeauVeau)g/S = 1,072 ×
105 Pa.

Exercice 6 : Champagne ! (QCM 2014)

Cet exercice est, mine de rien, une résolution de problème : la physique ou les calculs ne
sont pas ultra compliqués, mais la difficulté est de savoir quoi écrire (poser des notations,
faire des hypothèses...) Une méthode qui marche souvent, c’est de commencer par se raconter
l’histoire physique correspondant à la situation, puis de traduire notre histoire en calculs.

L’idée est la suivante : une fois qu’on a un peu débloqué le bouchon à la main, il se fait
pousser par la pression à l’intérieur de la bouteille, supérieure à la pression atmosphérique
(P0 ≈ 105 Pa). À la sortie du goulot, il aura donc une certaine vitesse v.

Une fois le bouchon éjecté, on pourra considérer qu’il s’agit d’une particule ponctuelle
effectuant un mouvement de chute libre, avec comme vitesse initiale v. Donnons-nous donc
comme premier but de calculer cette vitesse.

Une manière de procéder est d’utiliser le théorème de l’énergie cinétique entre deux
instants :

— l’instant où la personne ouvrant la bouteille vient de décoincer le bouchon, qui a alors
une vitesse nulle et est encore complètement enfoncé ;

— et l’instant où le bouchon atteint le bord du goulot : il a alors la vitesse v inconnue.

La différence d’énergie cinétique du bouchon entre ces deux instants vaut donc ∆Ec =
1
2mv2,

avec m = 8,0 g la masse du bouchon.

SP0

SP1

S

Figure 5 – Forces
sur le bouchon
dans le goulot.

Entre ces deux instants, le bouchon est soumis aux forces de pression
du gaz à l’intérieur de la bouteille, à la pression P1 = 6,0×105 Pa, et à celles
du gaz à l’extérieur de la bouteille, à la pression P0. On peut considérer
que ces forces sont constantes le long du mouvement du bouchon dans le
goulot, et valent en valeur absolue P1S et P0S respectivement, si S = πd2/4
est la surface de la section du bouchon, dont on connait le diamètre
d = 1,0 cm. On néglige la pesanteur lors de cette étape 1. Tout compte fait,
le travail des forces sur le bouchon le long de son parcours dans le goulot
vaut W = Sℓ(P1 − P0), où ℓ = 2,0 cm est la longueur du goulot.

Le théorème de l’énergie cinétique donnant ∆Ec = W , on trouve
1
2mv2 = Sℓ(P1 − P0).

Il reste ensuite à résoudre le problème de chute libre pour trouver
la hauteur maximale atteinte par le bouchon lors de sa trajectoire à
l’extérieur de la bouteille. L’énoncé ne donne pas la direction dans laquelle
le bouchon est tiré : faute de précision, supposons qu’il est tiré vers le
haut. On peut alors à nouveau appliquer un théorème énergétique, celui
de l’énergie mécanique, entre l’instant où le bouchon sort de la bouteille
(il a alors une vitesse v) et celui où il atteint le sommet de sa trajectoire (il a alors une vitesse
nulle). Entre les deux, il a gagné une hauteur H , et donc une énergie potentielle de pesanteur
mgH . On a donc ∆Em = mgH − 1

2mv2 = 0.

1. On peut vérifier que c’est une hypothèse pertinente : le poids vaut mg = 8 × 10−2 N, et la résultante des
forces de pression S(P1 − P0) = 4× 101 N.
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Ainsi, en mettant nos deux résultats bout à bout, on trouve mgH = Sℓ(P1 − P0), puis

m =
Sℓ(P1 − P0)

mg
= 10 m. Comme on a négligé tous les frottements, on trouve une valeur trop

grande par rapport à la réalité, mais on a le bon ordre de grandeur.

2 Actions sur les solides

Exercice 7 : Poussées d’Archimède

On suppose la sphère homogène de masse m et de volume V , et on néglige la poussée
d’Archimède de l’air. La sphère étant en équilibre, la résultante des forces est nulle et le poids
de la sphère est opposé à la poussée d’Archimède exercée par l’eau sur la partie immergée de
la sphère. Ainsi, les deux vecteurs sont égaux en norme et

mg = ρeau
2

3
V g

Notons, dans l’huile, x la fraction du volume de la sphère immergé. L’égalité des normes
des forces donne cette fois-ci

mg = ρhuilexV g

soit
mg =

3

4
ρeauxV g

En mettant tout bout à bout, on obtient

ρeau
2

3
V g =

3

4
ρeauxV g

donc
x =

8

9
.

L’huile ayant une masse volumique plus faible que l’eau, pour une même masse de fluide
déplacé, le volume de fluide déplacé est plus important pour l’huile que pour l’eau donc la
sphère s’enfonce.

Exercice 8 : Montgolfière

Pour que la montgolfière décolle, la résultante des forces doit être dirigée vers le haut.
Les forces s’appliquant sur le système "enveloppe de la mongolfière+gaz de volume V0" sont
le poids ainsi que la poussée d’Archimède de l’air. Il faut donc que la norme de la poussée
d’Archimède excède celle du poids. La loi des gaz parfaits s’écrit

PV = nRT

ou plutôt P = ρ
RT

M
avec M la masse molaire.

Ainsi la poussée d’Archimède vaut ρairV0g et le poids vaut (m+ ρV0)g =
P0MV0g

RT
+mg .

La mongolfière décole donc si ρairV0g >
P0MV0g

RT
+mg c’est à dire

T >
P0MV0

R(ρairV0 −m)
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(a) Bouteille à l’équilibre

z

(b) Bouteille déplacée
de son équilibre

Figure 6 – Bouteille à la mer. La ligne en pointillets indique les deux tiers de la bouteille.

Exercice 9 : Poussées d’Archimèdes (encore !)

Trois forces s’appliquent sur le bloc. La poussée d’Archimède de l’eau sur la partie supé-
rieure, celle de l’huile sur la partie inférieure et le poids, de sens opposé aux deux forces
précédentes. Une projection selon la verticale donne donc

mg =
4

5
ρeauV g +

1

5
ρhuileV g = (

4

5
ρeau +

1

5
0, 9ρeau)V g

Donc
ρ =

m

V
= (

4

5
+

1

5
0, 9)ρeau =

Exercice 10 : Blocs immergés

Exercice 11 : Pierre et morceaux de bois

Exercice 12 : Balance ton quoi???

Exercice 13 : Bouteille à la mer

L’énoncé ne donne pas de notations : faisons-le à sa place. Notons m la masse de la
bouteille, g l’accélération de la pesanteur, V le volume de la bouteille, Vi son volume immergé,
S sa section, H sa hauteur et ρ la masse volumique de l’eau.

On considère la figure 6 et on étudie d’abord la situation d’équilibre. Les forces s’appliquant
alors sur la bouteille sont son poids mg et la poussée d’Archimède ρVig = 2

3ρV g d’après l’énoncé.
Comme on est à l’équilibre, on obtient la relation m = 2

3ρV .
Étudions maintenant les oscillations de la bouteille. Notre stratégie est d’appliquer la

deuxième loi de Newton pour obtenir l’équation du mouvement de la bouteille et identifier
la fréquence de ses oscillations. Pour appliquer le PFD, il faut un système (la bouteille),
un référentiel (celui de l’océan), mais surtout les deux membres de F = ma : les forces et
l’accélération. Commençons par l’étape de cinématique : le calcul de l’accélération.

On définit le paramètre z comme sur la figure 6, c’est-à-dire comme la hauteur de la ligne
des deux tiers de la bouteille par rapport à la surface de l’eau. L’accélération du centre de
masse de la bouteille est ainsi z̈.

Calculons maintenant les forces s’appliquant sur la bouteille. Son poids vaut toujours mg,
mais comme elle a bougé, son volume immergé n’est pas le même qu’à l’équilibre : il vaut
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Vi =
2
3V − Sz. Anticipons dès maintenant l’application numérique : on ne connait pas S, mais

on connait H et on sait que V = SH . Écrivons donc Vi = V
(
2
3 − z

H

)
.

On peut maintenant écrire le PFD : mz̈ = −mg + ρVig, soit z̈ = −g + ρVi
m g. Dans cette formule,

on injecte les égalités m = 2
3ρV (obtenue à l’équilibre) et Vi = V

(
2
3 − z

H

)
: on trouve ainsi

z̈ = −g + 2/3−z/H
2/3 g = − 3g

2H z. On reconnait l’équation d’un oscillateur harmonique, de pulsation

propre ω0 =
√

3g
2H . La fréquence correspondante est donc f0 =

ω0
2π = 1,1 Hz, un résultat conforme

à l’intuition.

3 Fluides en écoulement

Exercice 14 : Application du cours (QCM 2025)

Cet exo permet d’appliquer la loi de Bernoulli. Bien qu’il ne le précise pas, l’énoncé veut
qu’on suppose l’écoulement parfait et stationnaire, en plus d’être incompressible, ce qui
permet d’appliquer la loi de Bernoulli.

Remarque : en QCM, on n’a pas à justifier ses hypothèses, on peut donc en faire en restant
raisonnable : c’est ce qu’on fait ici.

On a donc
v2O
2

+ gzO +
PO

ρ
=

v2A
2

+ gzA +
PA

ρ
=

v2B
2

+ gzB +
PB

ρ

L’énoncé nous donne explicitement ce que dit l’équation de continuité :

vA =
vO · π(2R)2

πR2
= 4vO

vB =
vO · π(2R)2

π(3R)2
=

4

9
vO

En remarquant que tous les points sont à la même hauteur, on réécrit cela en

PA = PO +
1

2
ρ(v2O − v2A)

PA = PO +
ρ

2
v2O(1− 16) = 2, 92 · 105Pa

De même,
PB = PO +

ρ

2
v2O(1−

16

81
) = 3, 00 · 105Pa

Remarque ; dans l’énoncé originel au format QCM, la bonne réponse était PO = PA = PB =
3, 0 · 105Pa, les autres options étant clairement fausses au vu des pressions trouvées par le
calcul.

Exercice 15 : Vidange de deux récipients

Exercice 16 : Louvoyage (QCM 2009)

L’idée de l’énoncé est la suivante. Le louvoyage est une manœuvre utilisée pour gagner de
la vitesse en bateau face à un vent.

Mais un vent n’est autre que le mouvement relatif de l’air par rapport au bateau ! Ainsi, si
le bateau avance en étant emporté par un courant, il gagne une vitesse relative par rapport à

6/9



Physicité IPhO : Hydrodynamique (corrections)

l’air, qu’il perçoit comme du vent, même si l’air est immobile par rapport à la terre. Peut-il
alors utiliser ce « vent » pour appliquer sa technique de louvoyage et accélérer ?

Le principe de relativité, qu’il soit sous sa forme « classique » (galiléenne) ou einsteinienne
(peu pertinente ici), indique que les lois physiques ne dépendent pas du référentiel employé.
Bien loin de rentrer en contradiction avec la manœuvre proposée par l’énoncé, c’est même lui
qui est à la base du raisonnement qu’on a décrit ci-dessus.

En effet, il exprime précisément que rien ne distingue un vent créé par des phénomènes
météorologiques d’un vent créé par le mouvement relatif du voilier par rapport à l’air. La
réponse (d) suggère elle-aussi une différence entre ces deux « types de vents » : il n’en est
rien.

Finalement, il paraît assez contre-intuitif de pouvoir accélérer grâce au vent alors même
qu’il nous arrive de face et semble voué à nous repousser. On est donc tenté d’invoquer la
conservation de l’énergie pour nier la possibilité de louvoyer. Mais un bilan énergétique propre
n’est pas facile à poser... et ne nierait rien du tout, puisque le louvoyage est effectivement
possible dans la vraie vie.

De fait, l’énoncé ne demande pas de discuter de la possibilité de louvoyer : il nous affirme
cette possibilité lorsque l’air est en mouvement par rapport à la terre, et nous demande
uniquement de savoir si c’est aussi possible lorsque l’air est immobile par rapport à la terre
mais que l’eau est en mouvement.

Si la conservation de l’énergie n’est pas violée dans un référentiel, elle ne le sera pas non
plus dans un autre : aussi contre-intuitif soit-elle, la technique du louvoyage est bel et bien
possible, et la bonne réponse est la (a).

Exercice 17 : Trou story (QCM 2007)

Suivons le raisonnement proposé en indice : quelle est la cause physique de l’éjection de
l’eau par le trou ?

Si l’eau est mise en mouvement horizontalement, c’est qu’une force l’a poussée. Lorsque la
tasse est au repos, cette force provient de la différence de pression entre l’eau proche du trou
et l’air à l’extérieur de celui-ci. En effet, l’eau proche du trou est à une pression supérieure à
la pression atmosphérique d’après le principe fondamental de l’hydrostatique, puisqu’elle doit
souvenir le poids de la colonne de liquide au dessus d’elle.

Reprenons ce raisonnement lorsque la tasse est en chute libre. La pression de l’eau proche
du trou est-elle encore supérieure à la pression atmosphérique ? La réponse est non. En effet,
l’eau n’a plus besoin de soutenir le poids de la colonne d’eau au dessus d’elle, puisque celle-ci
tombe avec le reste de la tasse !

On peut préciser cet argument : reprenons la démonstration du principe fondamental
de l’hydrostatique. Il convient donc de considérer une colonne d’eau, de hauteur H , dont la
pression à la base est P (z) et au sommet est P (z +H). Lorsque l’eau est au repos, les forces
se compensent : on peut écrire SP (z) = SP (z +H) + ρV g, soit P (z) = P (z +H) + ρgH avec
V = SH .

Mais lorsque la tasse et l’eau qu’elle contient sont en chute libre, le système n’est plus
au repos et les forces ne se compensent pas. De fait, l’accélération de son centre de masse
est g (vers le bas), et la deuxième loi de Newton donne donc −ρV g = SP (z)− SP (z +H)− ρV g,
soit P (z) = P (z +H). Ainsi, peu de temps après que la tasse ait commencé son mouvement de
chute libre, toute l’eau est à la même pression, c’est-à-dire la pression atmosphérique.

La bonne réponse est donc la (d) : l’eau ne coule plus de la tasse.

Exercice 18 : Vidange de Toricelli
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h(t)
A
B

v

S

s

Figure 7 – Vidange de Toricelli

1. Le débit volumique en sortie du trou vaut sv. Notons V la vitesse du liquide au point A,
sur la face supérieure de l’eau. Le débit volumique à cette hauteur vaut SV . Le régime
n’est pas tout à fait stationnaire ici (puisque la surface de l’eau baisse au cours du temps),
mais on peut quand même écrire approximativement la conservation du débit : sv = SV .
On trouve alors V = v(s/S).
Comme s ≪ S, on a V ≪ v : la vitesse de la surface est négligeable par rapport à la
vitesse d’éjection du fluide par le trou. En fait, c’est cette approximation qui justifie que
le régime est presque stationnaire : la hauteur de l’eau baisse certes, mais lentement.

2. Appliquons le théorème de Bernoulli à la ligne de courant entre les points A et B. En A, la
pression est la pression atmosphérique P0, l’altitude est h(t) et la vitesse est négligeable.
En B, la pression est la pression atmosphérique car le jet est fin, l’altitude est 0 et la
vitesse est v. On a donc P0 + ρgh(t) = P0 +

1
2ρv

2, d’où v =
√

2gh(t).

3. Le débit volumique sortant du récipient est sv. Il correspond à un volume perdu par l’eau
du récipient par seconde. Or, si le niveau de l’eau baisse de |dh| pendant le temps dt, il perd
un volume |dV | = |dh|S. Puisque |dV | = svdt, on trouve donc dh

dt = −(s/S)v = −(s/S)
√
2gh(t).

Si h(t) = AtB , on trouve B = 2 et A = g
2

(
s
S

)2.
Si l’on note T le temps de vidange du récipient, on a h(−T ) = h0 puisque h(0) = 0, d’où
T = 2h0

g
S
s .

4. Lorsque S = s, la formule précédente prédit T =
√
2h0/g.

Or, si S = s, le trou a la taille du récipient : l’eau est donc mise en chute libre et tombe
en bloc. Ainsi, l’altitude de sa surface suit l’équation ḧ = −g, de sorte que h(t) = h0 − 1

2gt
2

en étant lachée à vitesse nulle lorsque t = 0. Toute l’eau sera sortie du récipient lorsque
h = 0, c’est-à-dire t =

√
2h0/g, ce qui coïncide avec notre prédiction précédente.

Exercice 19 : Trois trous dans un vase (QCM 2015)

H

h

z
x

d

Figure 8 – Jets d’eau émergeant d’un vase percé.

Calculons tout d’abord la vitesse d’éjection du liquide par un trou à la hauteur h (voir
schéma). Si le trou est petit, on peut considérer qu’on est quasiment en régime stationnaire et
que la vitesse de la surface du liquide au sommet du vase est faible par rapport à la vitesse
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du jet (se référer à l’exercice précédent pour plus de détails). Alors, le théorème de Bernoulli
entre les points A et B donne P0 + ρg(H − h(t)) = P0 +

1
2ρv

2 : en effet, la pression à la surface
du liquide est égale à la pression atmosphérique, et le jet est fin donc sa pression est presque
uniforme. Ainsi, v =

√
2g(H − h).

Comme évoqué dans le cours, puisque la pression est uniforme dans un jet d’eau, les
particules d’eau évoluent quasiment indépendamment les unes des autres et on peut décrire
le mouvement de chacune comme une chute libre. Considérons donc une telle particule de
fluide, partant en t = 0 de (x(0), z(0)) = (0, h) avec la vitesse (vx(0), vy(0)) = (v, 0). Son équation
du mouvement est ẍ = 0, ÿ = −g, soit vx = cste = v puis x(t) = vt et y(t) = h− 1

2gt
2.

La portée d’un jet (ou d’une trajectoire de chute libre) est définie comme la distance
horizontale parcourue lorsque la trajectoire touche le sol. Ce contact se produit lorsque y = 0,
soit T =

√
2h/g. Alors, la portée vaut d = x(T ) = v

√
2h/g = 2

√
h(H − h).

On peut donc calculer : pour h1 = H/4 on a d1 =
√
3H/2, pour h2 = H/2 on a d2 = H, pour

h3 = 3H/4 on a d3 =
√
3H/2. On a donc d2 > d1 = d3, la bonne réponse est donc la (c).

PS : On peut montrer, à la manière d’une parabole de sécurité, que l’enveloppe de tous les
jets d’eau tracés en faisant varier la hauteur du trou h est la droite de pente −1 passant par
(0, H).

Exercice 20 : Robinet (QCM 2016)

2r0
2r = r0

h

g

Figure 9 – Écoulement en sortie d’un robinet (représenté horizontalement)

On cherche une information sur la taille du jet d’eau. Le seul moyen qu’on connaisse pour
faire ça, c’est la conservation du débit : commençons par l’écrire.

Le débit volumique vaut D = Sv = πr2v = πr20v0. Si on veut connaître le rayon, il faut donc
connaître la vitesse. Pour ça, on a le théorème de Bernoulli : ça tombe bien, l’énoncé précise
que la pression est partout égale à la pression atmosphérique. Entre la sortie du robinet et
un point donné le long du jet, on a donc P0 +

1
2ρv

2
0 = P0 +

1
2ρv

2 − ρgh, d’où v =
√
v20 + 2gh puis

r = r0
√

v0/v = r0
(
1 + 2gh/v20

)−1/4.
Lorsque le rayon est divisé par deux, on a donc 1/2 =

(
1 + 2gh/v20

)−1/4 puis 16 = 1 + 2gh/v20 ,
d’où h = 15v20/2g = 15D2/2π2r40g.

Lorsque D est doublé, on a donc h quadruplé : la bonne réponse est la (a).
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